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ABSTRACT

AN INSTRUMENTED ARCHITECTURAL SIMULATION SYSTEM

Simulation of systems at an architectural tevel can offer an effective way to study critical
design choices if (1) the performance of the simulator is adequate to examine designs executing
: significant code bodies -~ not just toy problems or small application fragments, (2) the details
. of the simulation include the critical details of the design, (3) the view of the design prescnted
' by the simulator instrumentation leads to useful insights on the problems with the design, and
(4) there is enough flexibility in the simulation system so that the asking of unplanned
questions is not suppressed by the weight of the mechanics involved in making changes either
in the design or its measurement. A simulation system with these goals is described together
— with the approach to its implementation. lts application to the study of a particular class of
' multiprocessor hardware system architectures is iliustrated.
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I INTRODUCTION

Simulation systems are quite often developed 10 the context of a particular problem. To a
degree, this is true for SIMPLE, an event based simulation system, and CARE, the computer
array emulator that runs on SIMPLE.! The problem motivating the development of both
SIMPLE and CARE was the performance study of 100 to 1000-element multiprocessor systems
execuling a set_of signal interpretation applications implemented as "1000 rule equivalent
expert systems" [2].

A set of constraints pertinent to this problem governed the design of SIMPLE/CARE. The
applications represented significant bodies of code and so simulation run times were expected
to be an important consideration. Moreover, the issues involved with the interactions of
multiprocessor system elements were sufficiently unexplored prior to simulation that
simplifications in the CARE system model, specifically with respect to elemeni interactions,
were suspect.  This need for detail was, of course, in tension with the need for simulation
performance. The ways that simulated system components would be composed into complete
systems was initially difficult to bound. Further, it was clear that the models of these
components would be elaborated over time and would undergo substantial change as design
concepts evolved. [t was also clear that the ways of examining the operation of these
components would change independently (and at « great rate) as early experience indicated
what alternative aspect of system operation should have been monitored in any given
completed run.

The design goals that emerged then were (1) that the simulation system should support the
managemen( of substantial flexibility with regard to simulated system structure, function, and
insirumentation and (2) that, in order (o accomplish runs in acceptable elapsed times, the detail
of simulation should be particularly focused on the communications, process scheduling, and
context switching support facilities of the simulated system -- that is, on just those aspects of
system execution critical to multiprocessor (as opposed 1o uniprucessor) operation.

I.1 Design Time Interaction And Run Time Operation

Encapsulation of the state of design components with the procedures that manipulate that
state is one clear way to manage design evolution. Such encapsulation partitions the design
along well defined boundaries. Components (by and large) interact with other components
only through defined ports. Connections between components terminate at such ports. When
a system simulation is initialized, connections are traced so that for every port, the simulator
knows the connected (terminating) ports together with their cortaining components. Unce such
initialization is complete, that is, throughout the simulaticn run, assertions about the state of a
port of one component can be directly translated to assertions about the state of connected
ports of other components.

Partitioning issues of system structure, component hehavior. and instrumentation into separale
domains of consideration helps 1n managing a design that is both fluid and complen. System
structure, that is, the relationship between components, can be specified through use of an
interactive, graphics structure editor and is largely independent of component function per se.
Component hehavior is encapsulated in a set of definttions pertinent 1o the given class of
component. Each comiponent in a SIMPLE simulated system is a member of a class defined
for that component type. Instrumentation is avtomatically and invisibly made part of the
definition of each simulated component that is to he monitored during a run. This is done by
arranging that the class of every component to be monitored is a spectalization of the general
instrumented=box class.  The basic data structures and procedures for monitoring simulated
components and maintaining the orgamizational relationships between each component and its
related instrumentation are inherited thiough this general, ancestral class and are thus made a
separate, suhstantially independent consideration 1y the design,

ISinp F and CART were deseloped by dhie authors ot (he K nowledge Systems 1ab of Stanford Universite  SINPLE
o descendent of PALEADIO [T opumed tor the subaet of PATT ADICOY capabibties relesant w hierarducal design
caplure and stmulavion 1o switten o Zetahsp [4] and cutrenth 1uns on Syimbolics 3600 machnres and T Explorers.
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A further partitioning of concerns 1s employed to separate out the definition of the
application programming language interface and its support (as provided by CARE) from the
underlying information flow control governing component behavior. The behavioral
descriptions of components (which are expressed uas sets of condition/action rules) deul
generically with gating information, independently of the structure of the information, between
ports of the component and its internal state variables. This is separated in the component
model definitions from the functious performed to create and manipulate the information so
gated. The simulated implementation of the application programming language support
facilities, on the other hand, relies only on the specifics of the information and its structure
and plays no part in gating it between the components of the system. Changing the definition
of the application language is thus done independently of changing component flow control
behavior. The application programmer and the implementer of the application language
interface may use whatever data structures seem suitable to them, be they numbers and
keywords or procedure bodies and execution environments. The simulation system doesn’t care.

The component probe definitions, that is, the specifications of what information should be
captured for each component type, are separated from the descriptions of the behavior of such
components. In designing for flexibility in the instrumentation system, it turned oul to be
important to further divide the information presentation from the information collection
issues. The mapping from particular component probes to particular instrument panels and the
trar.sformations to be applied to the informatien as it passed from a given kind of probe to a
given panel (and between panels) is captured in the instrument specification. This is a
definition of what kinds of panels are included in an instrumens, how they fit on an
instrument screen, how they are labeled and scaled, and what information from which kinds of
probes are displayed on each panel. The istrument specification also indicates what kinds of
probes are to be connected to which kinds (that is, which classes) of components in the system.

application code

multiorocessor
gomponent library

programming language
interface

component probe
interface

nstrdment
specification

design time interactions simuigtion run
Figure I: Design Time [ateractiors and Run Time Representations

Putting together all the definitions of components, component probes, panels, instruments,
applications interfaces, and inter-component relationships is done in a set of design time
interactions by a system architect, These interactions are used by the simulation system to
generate efficient run time representations so that simulation performance goals can be mel.
Figure 1 illustrates the partition between design time interactions and simulation run time
operation. Structure editing pulls together components from the component library to produce
a circuit. Associated with some components in the library, there are definitions for the syntax
and underlying mechanisms of a multiprocessor applications language. These specify the
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interface used to provide the program input o the multiprocessor system being simulated.”
The definitions used to generate component probes are associated with each library component
to be monitored. There may be several such definitions, each appropriate (o measuring a
different aspect of the associated component's operation. An instrument specification selects
from these definitions, elaborates them with selections from a set of probe operation modules
to include any pre-processing (for example, a moving average) to be calculated by the probe,
and indicates under what conditions what information from the probe is to be sent to which
panels of the instrument and how it is to be transformed and displayed there. Ilnstrument
specifications also partition the screen among the panels of the instrument. The end product
of these design time interactions is an instrumented circuit and an instrument. The instrument
comprises a set of instrument panels and a set of constraints relating them to the instrument
screen, The instrumented circuit ties together instances of components, probes, and panels for
a simulation run.

For each defined class of component and its associated probes, the design time interactions
produce code bodies that accomplish simulation operations during a run. It is an attribute of
the underlying Lisp base of the simulation system that changes in these definitions have
immediate effect even during a simulation run -- an important capability during debugging.

2 STRUCTURE, AND COMPOSITION

Design  time interactions to specify a system include the establishment of component
relationships.  Such specifications can be said (o accomplish the composition of the system
from its components and so define its structure. SIMPLE supports hierarchical composition:
components may be described in terms of a fixed set of relationships among their sub-
components. Additionally, such composite components may have function beyond what can be
inferred strictly from their composition. All this can then be included a higher level
composite (as shown in figure 2) and so on indefinitely until the top level "circuit”, the system
structure, is reached.

.l b dlh
- o = L i
fifo-buffer [ fifo-buffer siiitie Helsjiitle
" X
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o RN .“
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"] -1
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Figure 2:  Hrerarchical Composition

The behavior induced on a composite component from its parts changes according to the
behavior of its parts. Thus, for example in figure 2, if at any time during a simulation the
function of CARE ouperator components 1s changed by redefining their operation, the behavior

R

“The tanguage priumiuves supphed can be used o detime multprocessar Language mterfaces Tor erther shared-sarable
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of the nine-site grid is in immediate correspondence.?

Composition is described graphically and interactively in SIMPLE by picking a previously
specified component type from a menu, placing it in relationship to other components with
"mouse” movements, and, through the same means, specifying the connections between its
selected ports and those of other components (as indicarad in figure 3).

EDIF JPLRNL{ONS
Hdgd ov .
Rdd ,L:,;::; 5 [ » +3] C 8] ”. s o £
Add Contacts . l
1.z Components
Dalers Components
Fzznace Bounding Bov .

Edir Sehavior et ater e wreg
Modi - Attributes

Instant:ate Bo.
Provot: e _Component [ o
Inspest Component

[nspect Worlys

CHANGE MOOE

aorey

i

» 3 > 8 » 1) » 3. » ¢

SITE 1 Leel

Figure 3: Graphic Structure Specification

Through another menu selection, ports can be defined for the new composite component so
that it, in turn, can be fitted into yet higher level structures. Such external ports can be
connected directly to ports of sub-components "within” the composite. If this is done,
information appearing on that external port will be the responsibility of the connected sub-
component. By this same means, a component previously described as a base level component,
can be redefined as a composite of yet lower level elements as its design is elaborated with
further details,

Components and (internal) connections c¢an also be deleted from a library component and
replaced with substitute components. After all sub-components and connections have been
added, deleted, elaborated, and replaced as required, the completed structure can then be entered
into a library of components and used 1n turn to compose higher or equivalent level
components,

2.1 CARE Base Components

CARE supplies a small library of system level base component types. Currently these are the
net-input, the ner-output, the fifo-buffer, the operator, and the evaluator. The net-input, net-

3Huwe\'er. ror reasons coneerming stubation perfarnunce and because of their relattvely low frequency, changes in
the number and names of the mternal stte varables of components and the structural relationships between sub-
components of 4 compustte are nut reflected i an already mstanoated crcuit. Changes m the iternal structure of a
CARF sire hibrary compontent, for example, will be retlected anly 10 arcuits instantitied after the change took eftect.
For this reason and o reduce long wrm storage requremients and load tume for the fundamentally iterative circuits that
we primiarily study, we do not keep files of astantated circuits. They are anstantiated as needed From a high level
library component with the same prototy pread stri e,
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output and fifo-buffer accept (or block), route, and buffer transmissions. They do so in
accordance with a dynamic, flow-controlled, multicast, cut~ithrough communications protocol as
described in [3].  The evaluator does the real work of the application: evaiuating the
application of functions to their parameters. The operator does the overhead work associated
with such evaluations: for example, scheduling processes and sending and receiving (but not
routing) messages.

In keeping with the objective of focusing simulation cycles on the aspects of the simulation
particularly relevant to multiprocessor operation, the behaviors of the net-input, net-output,
and fifo-buffer component classes are defined in fair detail, that is, at the register transfer
level. Routing operations are described procedurally and assumed to occur within a time set by
a parameter to the simulation. As indicated previously, the simulation of the operator and
evaluator is broken into two aspects: the control of the flow of information and the functions
performed on that information. The former is described in terms of SIMPLE behavior rules
(as documented in section 3), register transfer by register transfer., The latter is described
directly in terms of procedures and the simulated time taken by such procedures is modeled.
[n the case of the operator, this is done as a function of the number of storage cells
manipulated during an operator procedure. In the case of the evaluator, this is done as a
function of the execution time used by the machine executing the simulation, that is, the
simulation vehicle,

2.2 CARE Composite Co:nponents

The prototypical composite component supplied with CARE is the site. As supplied, it
includes net-inputs and net-outputs for up o eight "neighboring” components (generally other
sites), a net-~input and a net-output with associated fifo-buffers for local receptions and
transmissions, and, finally, an operator and evaluator as described above. Specializations of the
site, for example, the torus-site, exist in the library to fit the site into alternative topologies by
supplementing the site routing and wiring p-» :2dures as appropriate to the topology.

2.3 Automatic Composition in CARY

Although any connection of components can be created by the means noted previously, for
some repetitive, well patterned systems of connections, composition can be automated. The
CARE library includes a component, the iterated-cell. which represents a template for the
creation of composite components by iteration of a unit cell. The unit cells (for example, the
torus-site) are specializations of other components (for example, the site) as just discussed.
The specializations include a method for responding to a request to provide a wiring list. Such
a list associates each source port of a cell with the corresponding destination port (in terms of
port namies) and the position of the destination cell relative to the source cell in the iterated
structure. The iterated cell component uses this information to make the required connections
between each of its constituent cells.

3 SPECIFYING BEHAVIOR

SIMPLE is an event based simulator. The behavior of a simutated component is described in
terms of responses to the events pertinent to that component. A component's response may
include consequent events to be handled by the simulator as well as direct operations on
component state. Assertion of consequent events and the responses to them (involving further
conse  wees) drives the simulation. When there are no more events to handle, the simulation
is con 2

To maintain modularity in a simulation system, responses to simulation events should be
local to the affected component and its defined ports, that is, its connection to the remainder
of the simulated system.  The composition system of the simulator maintains the relationship
between ports of one component and those of other components connected to them. Assertions

O
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relative to a port of a component are thus sysiematically translated to events pertineni (0
components connected to it. This is the general mechanism for event propagation between
components. In a limited number of cases, a direct operation on a related component may be
appropriate.  With fair warning about its possibility of abuse, a facility is provided to
accomplish this.

3.1 Behavioral Rules

The behavior of a component is described in terms of its responses (o pertinent events.
Each event stipulates the component affected, its port or state variable signalled with an
assertion, the asserted value, and the simulated "time" of the event., The time of an event may
be thought of as the "current” simulation time. Differences in event times represent the
temporal relationship between events. Event times in SIMPLE simulations are monotonically
increasing,

For each type of component, there 1s a procedure to handle pertinent events, The arguments
to the procedure are those stipulated by the event (as just described). The procedure tests for
conditions and, as satisfied, asserts or directly effects consequent actions. The conditions may
include arbitrary predicates on the event parameters and the state variables of the component.

Event based simulators are based on the assumption that state and port variables remain
unchanged until explicitly modified.  Synchronous designs, that is, those in which the
opportunities for state change are temporally quantized to a clock, can be modsled in such
implicitly asynchronous, event based simulators by asserting the clock signal on a port of each
and every clocked component of the simulated syatem. If only some of (© components in a
system need take action on each clock signal, there is an obvious i .efficiency in this approach
that is crippling for systems with even a modest number of components.

If, however, event times in an event based simulator are restricted to integers, the clock can
be assumed. All that is needed is a way to detect the event for which a boolean combination
of conditions as strobed by an assumed clock is first met. Primitive condition predicates are
supplied for detecting ar "edge" (a value changed by the current event) with a coincident
"level” (a value set before ihe current event) of two ports or state variables of a component in
either of the two possible event sequences, The predicate both-states in the example
evaiuator behavior rule shown in figure 4 has these semantics,

s 1 If the evaluator is ready and there is at least one runnable process..

((or (both-states Evaluator-Status® 'ready Evaluator-Queue-Status 'some)
(both-states Evaluator-Status 'ready Evaluator-Queue-Status 'full))
: . nake it current, start evaluation, and adjust status as per removal.

(setq Evaluator-Status 'busy) sblock rule
(assert-state Evaluator-Status 'busy now) 1next event
(setq Current-Evaluation (queue-take Evaluator-Queue)) :note process
(user-evaluate Current-Evaluation now) rexecute it
(send self :evaluator-queue-decreased now)) 1note change

Figure 4: Example Condition/Action Behavior Rule

Figure 4 illustrates the generality of SIMPLE behavioral descriptions. The underlying object-
oriented programming system, Flavors [4], in which SIMPLE is implemented provides for
direct reference of component state variables. The conditions and actions of behavior rules for
a component then need only name the component's port or state variable (as stipulated in the
definition of that component type) to get or change the appropriate value in the component
instance for which the event is pertinent. Actions may include arbitrary procedures: for
example, the procedures user-evaluate and queue-take in the given example.

43) convention, component state varables are wirtten m capitized form,
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3.2 Using Methods

The environment for the execution of the procedures defining responses to events includes
the state variables and ports of the component instunce for which the event is pertinent.
These procedures are Flavor merhods [4] (in this case corresponding to the :ApplyRules
message) of the component type and, as just noted. refer implicitly to the state vartables of the
component instance handling the event.  Other methods may be defined for simulated
components: for example, the :evaluatcr-queue-decreased method invoked in figure 4.
Such methods aave proved to be a natural way to realize the functional operations of
components not described by hehavior rules.

The composition system leaves information about the enclosing and contained component
instances for each simulated component in system defined state variables of that component.
With this information, methods directly referencing the ports and state variables of such
related components may be invoked as needed. This is a useful but sharp-edged facility. The
warning about loss of modularity given previcusly applies here.

4 INSTRUMENTATION

The results of a simulation are primarily the insights 1t provides inio the operation of the
simulated system.  The “insight” we frequently experienced using an early version of the
simulation system was that more interesting results could have been produced by the run just
completed if only the instrumentation had been different. With this in mind, the design for
the current versica of the siiaulation instrumentation system was aimed at flexibility. This
was attained without significant performance impact by building efficient run-time system
structures before each run, as outlined in section 1.1, from the declarations defining the
instrumentation,

The organization of the instrumentaiion system is pictured in figure 5. The simdlator
interacts with component instances through assertions, that is, calls on an assert function, in
behavior rules (the methods associated with :ApplyRules messages). All instrumented
components are specializations of an instrumented-box (as well as other classes). After each
invocation of :ApplyRules for such components, the :ApplyRules method for a generic
instrumented-box is applied.  This causes invocation of the :trigger metrod for each
component-prube associated with that component.  Since this flow of measurements i3
accomplished by means invisible to the the writer of behavior methods for a componeit, the
concerns surrounding component design are effectively partitioned from component
instrumentation.  The remainder of this section details these “invisible” means used to
accomplish wicasurement flow during a simulation run as the measurements are staged from
components through component probes to instrument panels,

4.1 Cowmponent Probes

The first filtering of evenis is done by component probes. Some events cause no further
measurement activity since, as it turns out, not all events merit action on the part of the
instrumentation system. The parameters of the event and the ports and state variables of the
instrumented component dealing with the event are available to the component probe as are
the state variables of the probe itself. Each piece of the selected information is tagged with un
identifying keyword and passed along as the parameters of the strigger method along with a
keyword identifying the (ype of componen. probe, a number representing the current event
tme, and a pointer to the component with which the information is to be associated in the
display.  This pointer might be (0 some component related to the one actr ully handling the
event, for example, the component enclosing it.

Component probes may be composed of predefined probe operation modules to do stundard
caleutations (For example, moving averages) and then to forward the results to selected panels.
In order to automate the compusition of probes to accomplish such operations, each of these
operattons 1s chaimed together by voking the method for that probe that is associated with

8
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:ApplyRules
:create

o

.create

Figure 5;  Instrument System Organization

the system-defined message name of the generic next operation. Thus, the :trigger method
calls the :calculate method of the probe which, i turn, calls its :select method which,
finally, calls the :update method of the selected punels associated with the probe. Probes are
composed by naming them as specializations of appropriate probe operation modules (for
example a :calculate module tor moving averages) uas desired.  The default, if no

specializations are stipulated, is to pass through nformation without change to all the panels
associated with u probe.

Information flow between components and panels 1s accomplished by the component probes
associated with each instrumented component.  The creation of such component probes and
their association with appropnate components (by execution of :add methods) accomplishes
the instrumentation of a cirewt. This s done when an mstrumen s created.  During
simulatton initialization, the components of the circuit (and their suos=components) to e
instrumented are (recursively) examined by each cemplate probe defined for the instrument to
see if they are to be monmtored. If so, the :copy method for the given template probe s
invoked to create a new nstance of the appropriate component probe and add it to the probes
connected to the component.  Euach template probe previously received the adentifiers for the

o panels to which its clones should send intformation. These will be the panels identified when a
- F component probe nvokes the :update method.
= ; A NPT
R A 4.2 Instrument Specifications

The operations performed by an instrument panel are (o

o Find mformation prestously stored daccording to the component pointer supplied by
the :update method;
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o Link new data structures as needed (to save such information) to other such
structures of the panel;

o Suve in these data structures the results of expressions that reference indicated
keyed information from the :update parameters and the prior contents of the
structures;

o Send the results of periodic analyses on the information associated with a panel for
display by the same panel or by some other; and

o Show processed information in the manner specified for the panel.

The defaults for the panel operations supply the most commonly required specifications
implicitly. so simple operations are simply specified. These defaults can be overridden as
needed and either predefined or user specified alternatives for the panel operations can be
selected in their place.  Arbitranily complex (Lisp) expressions can be used to specify the
transformations belween the information provided by a probe and that saved and displayed by
the panel.

These transformations and alt the default overrides for the panel operations that are
stipulated in the instrument declaration are scanned when a new instrument is created for a
simulation session. They are compiled at that time into code bodies referenced by run time
control blocks ussociated with each panel. A simulated system is instrumented by examining
atl of its components and attaching to each component the copies of template probes specified
by the instrument definition that are appropriate for the component (by means of calls on the
:copy and :add methods for the probe). This can be a many to many relationship as shown
in figure .

panelis probes components
mapping
[boxes and lines) net-output-load
system-history net-output)
[scrolling_line_plot) et-output-connectio

operator-network
[self-scaling line plot]

operator-ioad

process-latency
(sglf-scaling point plot

operator ‘)

gperator-latency

producer-limited
LIscroling text with scroll bar

evaluator-load

consumer-limited

lscroling text with scroil bar

evaluator )

evaluator-latenc

Figure 6:  Insirument Probe and Panel Relationships

Component probes to measure "load” and “latency” are specified in the given example for
each operator and evaluator in the creuit. The "load™ and current "connection” for each net-
output is also to be monttored.  Some panels, tor example the one showing "consumer-fimited"
processes, receive inpuls From only one (ype of component probe, those measuring evaluator
latency.  Others. such as the one measurtng "process=latency” receive inputs from more than
one kind of probe (in this case, from probes measuring operator latency as well as those
measuring eviduator latency). A way must thus be provided o distinguish the type of probe
sending informution to a panel: this s descertbed 1n the nest section.
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Some probes send information to only one panel, for example, the net-output connection
probes. Others monitor information which 1s needed by several panels, for example, the
operator latency probe. Transformution of the raw information provided by a probe will need
to be specialized to the information expected by each panel receiving it. A general way (o
stipulate these transformations is stipulated in the next section.

S EXAMPLE. PANELS

Some example panels are described in this section to give a feel for the instrumentation
possibilities available in CARE and elaborate on how the requirements described in the
previous section for probe type identification at a panel and per panel specialization of the
information provided by a probe are handled.

5.1 Point Plot Panels

The first panel (shown in the left half of figure 7) 1s an example of a point plot panel used
lo generate a scatter plot.  As an option, only points representing simulated activity over a
limited past histosy from the most recent event time are kept for display. In this example,
resource load? information is provided by the operator-load and evaluator-load component
probes attached respectively to the operators and evaluators of the system.

SITE CORRELATION

Site Aveiladility Correlation Network & Operator-Evaluator Load
1.0 9 SR : 16 1 16 p

E -

v 0.8 N 12 A F12 §

a

1 9.6 4 t c

u wee o o W} 8 4 - 8 e

a @.9 - o ]

ro‘ 9'2-'.':': LR . . - n
0.9 r . , 0 i o 9

.00 0.30 9.66 1.00 6Se  7ee 733
Operator Simulated Time ([us]

Figure 7:  Point Plot and Scrolting Line Plot Panels

The balance between the “availabitity” of the evaluator and operator of each site, that is, the
complements of their respective loads, is displayed during the simulation as events are
processed that change this measure. [n order to avoid capturing information at too fine a
temporal granularity, previously gathered information for a given site is overwritten if it is
within a given sampling interval of the new information. Information that is beyond a given
history range is dropped. The scale of availabilities displayed is fixed between 0 and 1.0. The
panel specification to declare all this and to also stipulate the axis labels is shown in figure 8,

g
“Resource loud o defined as (1 = 1 7 (1« aggregaie-quene-Tength)) where the aggregate gqueue-length s the sum of
the lengths of all gueues provuting work tor the resvure.
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"((("Operator”) (0 1.0) (- 1 (:operator-load :busy))) s Bottom axis
(("Evaluator”) (0 1.0) ((- 1 (:evaluator-load :busy)))) :Left uxis
:find (find-sample-distinct (:simulator :time) ,sampling-interval)
:show (recent-history (:simulator :time) ,point-panel-history-range 0))

Figure 8: Site Correlation Panel Specification

5.2 Scrolling Line Plot Punels

An example of a scrolling line plot panel is shown in the right half of figure 7. This panel
sums the loads seen by the resources in the simulated system and displays this as a strip chart,
the "system history”. Some of the same probe load information used by the previous panel is
used in this panel as well, but with different transformations defined in the panel specification
as shown in figure 9

"({(("Simul= Time [us]") (.history-range) (:simulator :time)) ;Botrom
(("Netwo. .”) (0 ,siter) (:net-output-load :busy save-sum)) sLeft
(("Processing”) (0 ,sites) ;s Right

(average (:evaluacor-load :busy save-sum)
(:operator-~load :busy save-sum)}))
:find (update-history (:simulator :time) ,sampling-interval)
:show (recent-history (:simulator :time) .history-range 0))

Figure 9:  System History Panel Specification

Line plot panels may have two independently scaled vertical axes. For the system history
panel shown, the sum of network loads as indicated by the net-output components of the
system is plotted against the left aris and the sum of the processing loads provided by the
current average of the sums of the operator and evaluator loads is plotted against the right
axis, Event time is plotted on the horizontal axis. The update-history function uses the
component pointer to find the information previously saved for that component and records
the current event lime as the (:simulator :time) so that it may be used to display
information correctly on the horizontal axis. The current sums of the evaluator loads and the
operator loads measured by the system are stored in a record for the given event time (or a
prior event time within the specified sampling interval) by the calls to the save-sum function
specified as part of the save operation.

§.3 Self Scaling Line Plot Panels

Figure 10 illustrates both the self scaling of displays and the use of a display analvsis
operation.  For this self scaling hine plot panel, two pieces of data are collected for each
operator in the system: the load on the operator, shown on the right axis, and the fatency of
the information it has most recently received.  This last item is provided by the uperator
latency probe in two parts: (1) the interval between the creation of the mformation and its
receipt by the net-input fecding the operator and (2) the interval between such receipt and the
operator taking action on it.  There are thus two curves plotted on the left axis. The
specification stipulates a list for the left axis display. The elements of this list are the "net
delay” and the sum of this measure and the "operator delay” monitored by the operator latency
probe.  Since both delays are non-negative, thetr sum must be at least as large as either one
taken alone: the two curves may be superimposed but can not cross. The difference between
the two curves is the incremental delay added by the operator.

I'he panel specification for the operator-network panel is shown in figure 11, In addition to
transformations shown previously, an analysis function is stipulated for the send operation of
the panel. The information saved from each of the probes sending :update messages to the
panel is to be sorted from the greatest to the least values of the associated sum of delays
described above, This information is to be saved as the operato. latency rank and used as such
to determune the position gn the horizontal avis that the delay and load information wil! be
displayed.
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OPERATOR - NETWORK ‘
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Figure 10:  Self Scaling Line Plot Panel

*((("Operators”) (1 .sites) (:operator-latency :rank)) |
((("Latency” "us")) (0 nil) :Second string: 90 degree baseline shift |
((:operator-latency (:net-delay (+ :net-delay :operator-delay)))))
(("Load”) (0 1.0) (:operator-load :busy))
:send (sort-arrays
z #'> (:operator-latency (+ :net-delay :operator-delay))))
§:operator-1atency irank))))

Figure 11: Operator-Network Panel Specification

S.4 Boxes and Lines Pancls

Perhaps the most intuitively satisfying of the types of panels available is the buxes and lines
panel, a graphic representation of a circuit showing its components and their interconnections,
An example of such a panel is shown the left part of figure 12. This class of panels uses
information left behind by the structure editor when the circuit was defined. Its form is thus
automatically generated. The position of the components ("boxes”) and the connections 4
between them (“lines™) in the display are used to animate system operation. In the example ‘
shown, the shading (or color) of the boxes is used to indicate the availability of the evaluutors ;
in the simulated system as the simulation proceeds. Darkest shades indicate highest availability,
that is, empty queues for utilization of the resource; lighter shades indicate lower availability,
that is, longer queues, The lines between boxes indicate communication paths that are in use,
that is, not ":free” at the time of the most recent show operation for the panel.

The panel specification for the mapping panel, an instance of a boxes and lines panel, is
shown in figure 13, There are two specifications for the panel: one for the boxes and one for |
the lines. The specifiation for boxes in the panel stipulates that the availability of evaluators !
in the sites corresponding fo the boxes displayed controls the shading of those boxes. The |
scale is defined to run from O to 1.0. The speafication for lines in the panel uses the
connection information repuited for the net-output to determine line placement on the display.
When the status is reported as :free, the connection information is dropped from the panel
and the corresponding lines are removed.
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Figure 12:  Boxes und Lines Panel and Scrolling Text Panel

("Evaluator Available”) (0 1.0) (- 1 (:evaluator-load :busy))))
("Packet Trace") nil (:net-output-connection :points))
Packet Status") nil (:net-output-connection :status))
find (find-and-remove ,#'eq (:net-output-connection :status) :free)))

Figure 13:  Mapping Panel Specification

4
(

5.5 Scrolling Text Panels

Sometimes, the most appropriate way 1o display iformation is to show it as text. Based on
a similar facility provided by the underlying Lisp system, the scrofling text panel provides a
scrollable window into lines of text. In the right part of fizure 12, the delay in each process
execution while waiting for something to do. that is, the event time interval spent waiting for
an appropriate task to appear on a certan stream of lasks, is shown together with the process
that finally produced the awaited work.  This mmformation is sorted so that the text lines
appear from the greatest stream waiting interval to the least.

() ("-4D ~A")
((fix (:stream-waiting :interval))  :first field
(let* ((origins (packet-origin (:stream-waiting :packet)))
(origin (if (listp origins) (first origins) origins)))
(remote-address-local origin)))) :second field
. isend (sort-arrays ((.#'> (:stream-waiting :interval))) nil))

Figure 14 Producer Limited Process Panel Specification

The values and formats used for display 1 a scrolling text panel are defined much as in
previously defined panels.  Format control strings take the place of scale information. As
usual, values are described by a hist of forms, each one of which specifies the transformations
to perforni on anformation receved from probes.  The example specification in figure
14 shows the generahity with which probe information can be incorporated in Lisp expressions
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to produce transformation specifications. The information used to generate the value for the
second field of the text display is based on the origin of the task packet that arrived on the
stream the process was wailing for.

5.6 Noting Simulation Parameters

The CARE component models are parameterized through menu interaction as shown in
figure 15 to allow easy variation of their performance characteristics relative to each other.
Additionally, the site model parameterizes alternative routing strategies: directed. that is,
blocking when progress can not be made toward the goal; spiraling around the goal if progress
toward it is blocked; and dithering, that is, routing away from the goal even if only the last
link towards il remains to be acquired. The rate at which each site accepts application data is
also a parameter, the duta rate and can be used by an application to controt how hard it
drives the simulaled system,

R IMU At 10N PArAneL2r s

Data Rate [u3]: 25.0

Evaluation Dverride [us]: NIL

Stack Group Switich Dverrid2 [uws]: 1.0

Process Block Lreation Querride [us]: 4.0

Stack Group Creation Querride [us]: 20.9

Operator Word Touch Time (us): 0.2

Communicat 1on Syoles: 4

Pout ing: DIRECTED SPIRALING DITHERING

ot O

[

Figure 15 Parameter Menu

Many of the CARE parameters are specified as overrides. If not specified, the corresponding
performance is taken as measured on the simulation machine, Thus, the evaluarion vverride,
that is, the time to perform an evaluation can be specified as non-nil in order to fix the time
that each user evaluation will take. (This is useful in making runs repeatable for debugging).
The time that it takes to swilch context can be specitied as the stack group switch override.
Similarly, the time 0 create a process control block and a stack context for that process can be
taken as given rather than meuasured by specifying respectively the process bluck creation
override and the stuck group creation override.

The time required for operator execution is modeled in terms of the number of words the
operator must manipulate in handling a given message. The manipulation time per word is
specified by the operator word touch time.  Lastly, the performance of the communication
subsystem is spevitied as communication cyeles,  This is done in terms of the minimum
number of evaluator data path clovk times (that is, event times) required for a 32-bit word to
pass a given point in the network. Thus the parametric specification, "4 communication
cycles”, dictates that 8 bits may cross such a boundary each time the evaluator passes through
one event time. If the communications path were narrower or the base communication clock
rate were lower, a higher number would be specified.

.

OTES.
FIISIN 08:%4:48 32 DIRECTED Cec'es, Accetaration 2, Creation 200048, Sviten 2%0as, Csaluation 29.8, Data 138

Figure 16:  Annotation Fanel

The last example of SIMPLE panels 1s the annotation panel as illustrated in figure 16. This
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is used to (automatically) record the date, time, and parameters of the simulation run as well as
any other information the user chooses to kevboard into it. !

5.7 An Instrument Screen !

All these panels are put together in an instrument screen according to a set of layout
constraints manipulated by the underlying window system, The finished screen might look like
figure 17. The instrument screen is redrawn at a rate set by the user. By experience, it is
often better to update the screen at a frequency low enough to let the user interpret each
screen comfortably than at the maximum rate possible. This approach also restricts the
computing resources consumed by the instrumentation system. More focused approaches to
controlling instrumentation load on the system include the ability to freeze selected panels and
disconnect selected probes during a simulation run. ;
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Figure 17:  Overseer Instrument
6 USING PROGRAM DEYELOPMENT TOOLS
The SIMPLE/CARE simulation system s integrated into the underlying Lisp machine
4 program development environment.  The objects and data structures at both the component
) model and application language interfuce have abstraction interfaces that provide summary
2 {
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state information when they are displaved in text form. These text abstractions are "mouse
sensitive” in the development machine environment and so can be inspected at successively
finer levels of detail as desired.

In figure 18, the net-outpul components of the site at grid coordinates (3 2), the particulars
of the net-output on the east side of the site (that is, net-output-3), and a summary of ali
the sub-components of the site at (3 2) are being inspected. This same kind of view into the
progress of a simulation is provided in the debugging process and may, as shown in figure 19,
refer to the conceptual entities of the application that is driving the simulated system.
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Figure 18: Inspecting Simulated Components

In the example shown in figure 19, a distributer process running on the evaluator at site
(1 1) has made an improper call on the update-locale function during execution of its
:start method. 1t might have been appropriate Lo investigate this situation in terms of the
modeled components. That could be done, for example, using the debugger to inspect the
evaluator component, its enclosing site, related net-output components, or whatever else at the
component model level seemed relevant. In this case, what was done was to use a few nouse
clicks to indicate interest in the source file for the distributer :start method generating
the problem. It was brought up for review and control was then transferred to an editor using
the underlying program development environment as shdwn in figure 20,

Because of the implementation system chosen for the realization of SIMPLE/CARE, at any
point in the simulation, procedures either in the application or in the component models can
be modified, incrementally recompiled (within a few seconds), and be made effective for all
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calls on them -- even those in the interrupted stuck frame. Thlls simulation ;xecutior) can.he
backed up to some previous point in the stack frame and retried (given that intermediate side
effecting code, if any, is safely re-executable).
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SIMPLE/CARE
CONSUMER LIMITED A ERSEER
(OEF ] “BTART) (service ssrvers future focale)

“Request creation of servers and continue on to :request to wait®

(let ((the-sites {loop for count from 1 to servers collect
(locale-site (update-locale locale)))))
(let ((object (refersnca seif)))
{without=clock
(format *output-stream® “~&~A [distrbuter] ~A"
(send (remote-site object) :location)
(mapcar #’(lambda (site) (send site :location)) the-sites)))

(posting request-strsam to future as :requests-stresam)

(spawning ((flavor "server) :start service acknowledgements) on the-sites
as service)

(applying (:request) on object as :distrbuter-requesting) ;for continuation

object)))

(DEFMETHOD (DISTRBUTER :REQUEST) ()
"I there's an aval.bb server and a request, pass out request; loop”
(loop

for response’ = (accnpt (first-posting acknovrisdgements))

for (value clents tag) s (accept (next-posting request-stream))

do (posting value to (posting-clients response)

for (cons acknowledgements clients) as tag)
(naxt-posting acknawiedgements))) ;done with this acknowledgement

(complie-flavor-methods distributer)
(DEFFLAVOR SERVER ({cervice (new-stream :server=r- quests))) ())

(DEFMETHOD (SERVER :8TAAT) (operation acknawiedgements)
"8end back notica of avallablity”
(lat* ({object {refsrence seif))
(the-site (remate-site object))
(tha=location (send the-site :location)))
(without~clock
(format ‘output~stream* “~&~A ~A" thelocation operation))
(posting 'Initkiized to scknowisdgements for (Kst service) as the-location)
(applying
(:request operation the-location) on object as :server-continuation)
oblnct))
cetalisp Font-
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7 CONCLUSIONS

The goals of simulation flexibility and simulation environment completeness have been dealt
with in the ways described throughout this paper. In summary, the system is flexible in that it
supports:

o Arbitrary data types and lengths in simulation. The information whose flow and
creation is controlled by simulated components may be of arbitrary complexity
-- from numbers and keywords to procedure bodies and execution environments.

« Instantaneous effect of definition change at both the application and component
modeling level (even during a simulation run).

o A broad range of instrumentation customization. Customizations may involve
arbitrary expressions for probe data transformations, many to many probe to panel
mappings, information from summary analyses on one panel's data inciuded in
another, and control of what state is saved and for how long.

« Separation of probe and component definitions to facilitate their independent
modification.

o An application language interface that is easily extended or changed without
recasting the information flow control described by the component behaviors.

While there is always room for additional capability®, SIMPLE/CARE is a usefully complete
system. It now includes:

« Supplied components for a network multiprocessor simulation with many of their
parameters customizable by menu interactions,

o A hierarchical structure editor that currently provides automatic grid and torus
composition operators.  (Automated ccmposition of richer topologies, such as
hypercubes, has been provided for in the basic design).

o A rule language thalt supports a synchronous design style without incurring the
overhead of (naive) synchronous simulation.

« Method invocation for functional simulation that is integrated into the behavioral
simulation rule system and which provides for operations by and on both local and
hierarchically related components.

Method specificition design aids provided by the underlying program development
environment (for example, method dictionaries and quick access to method sources
from the debugging system).

« An evolved set of panel templates providing sorted, scrollable text lines as well as
self and fixed scaling, “two and a half” dimensioned, history sensitive displays
which may be scatter plots, strip charts, line araphs, intensity maps, and signal
animations.

We set off to build a multiprocessor simulation system with performance adequate for the
understanding of  multiprocessor  systems  executing  significant  applications. The
SIMPLE/CARE simulation system has been used to study the operation of "expert systems” of
respectable size [2]. Depending on instrumentation load, these studies have involved
simulation runs from 20 minutes to several hours each., While faster wouid surely be better,
performance has proven adequate to these needs.

(’A histogram panel, For example, 1s qust tow being added (o the system
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